Computer Architecture: A Quantitative Approach, 4th Edition

Computer Architecture: A Quantitative Approach, 4th Edition

John L. Hennessy, David A. Patterson

Language: English

Pages: 704

ISBN: 0123704901

Format: PDF / Kindle (mobi) / ePub

The era of seemingly unlimited growth in processor performance is over: single chip architectures can no longer overcome the performance limitations imposed by the power they consume and the heat they generate. Today, Intel and other semiconductor firms are abandoning the single fast processor model in favor of multi-core microprocessors--chips that combine two or more processors in a single package. In the fourth edition of Computer Architecture, the authors focus on this historic shift, increasing their coverage of multiprocessors and exploring the most effective ways of achieving parallelism as the key to unlocking the power of multiple processor architectures. Additionally, the new edition has expanded and updated coverage of design topics beyond processor performance, including power, reliability, availability, and dependability.

CD System Requirements
PDF Viewer
The CD material includes PDF documents that you can read with a PDF viewer such as Adobe, Acrobat or Adobe Reader. Recent versions of Adobe Reader for some platforms are included on the CD.

HTML Browser
The navigation framework on this CD is delivered in HTML and JavaScript. It is recommended that you install the latest version of your favorite HTML browser to view this CD. The content has been verified under Windows XP with the following browsers: Internet Explorer 6.0, Firefox 1.5; under Mac OS X (Panther) with the following browsers: Internet Explorer 5.2, Firefox 1.0.6, Safari 1.3; and under Mandriva Linux 2006 with the following browsers: Firefox 1.0.6, Konqueror 3.4.2, Mozilla 1.7.11.
The content is designed to be viewed in a browser window that is at least 720 pixels wide. You may find the content does not display well if your display is not set to at least 1024x768 pixel resolution.

Operating System
This CD can be used under any operating system that includes an HTML browser and a PDF viewer. This includes Windows, Mac OS, and most Linux and Unix systems.

Increased coverage on achieving parallelism with multiprocessors.

Case studies of latest technology from industry including the Sun Niagara Multiprocessor, AMD Opteron, and Pentium 4.

Three review appendices, included in the printed volume, review the basic and intermediate principles the main text relies upon.

Eight reference appendices, collected on the CD, cover a range of topics including specific architectures, embedded systems, application specific processors--some guest authored by subject experts.





















size in such cases. Sometimes the application is expected to fit totally in the memory on the processor chip; other times the 8 ■ Chapter One Fundamentals of Computer Design application needs to fit totally in a small off-chip memory. In any event, the importance of memory size translates to an emphasis on code size, since data size is dictated by the application. Larger memories also mean more power, and optimizing power is often critical in embedded applications. Although the emphasis on

high-volume, cost-sensitive portion of the market. Thus, computer designers must understand the costs of chips to understand the costs of current computers. Although the costs of integrated circuits have dropped exponentially, the basic process of silicon manufacture is unchanged: A wafer is still tested and chopped into dies that are packaged (see Figures 1.11 and 1.12). Thus the cost of a packaged integrated circuit is Cost of integrated circuit = Cost of die + Cost of testing die + Cost of

affect the 1.7 Dependability ■ 25 cost of an integrated circuit for low volumes (less than 1 million parts), namely, the cost of a mask set. Each step in the integrated circuit process requires a separate mask. Thus, for modern high-density fabrication processes with four to six metal layers, mask costs exceed $1 million. Obviously, this large fixed cost affects the cost of prototyping and debugging runs and, for small-volume production, can be a significant part of the production cost.

---------------------------------------Instruction count i=1 The latter form of the CPI calculation uses each individual CPIi and the fraction of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi should be measured and not just calculated from a table in the back of a reference manual since it must include pipeline effects, cache misses, and any other memory system inefficiencies. Consider our performance example on page 40, here modified to use measurements of

second, third, and fourth editions (beta and final). Along the way, we have received help from hundreds of reviewers and users. Each of these people has helped make this book better. Thus, we have chosen to list all of the people who have made contributions to some version of this book. Contributors to the Fourth Edition Like prior editions, this is a community effort that involves scores of volunteers. Without their help, this edition would not be nearly as polished. Reviewers Krste Asanovic,

Download sample